B.Sc. Semester III (Honours) Examination, 2018-19
 PHYSICS

Course ID : 32413
Course Code : SHPHS-303C-7(T)
Course Title : Digital Systems and Applications
Time: 1 Hour 15 Minutes
Full Marks: 25
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Section-I

1. Answer any five questions:
(a) Convert $(11101 \cdot 101)_{2}$ into decimal number.
(b) Prove that $(B \bar{C}+\bar{A} D)(A \bar{B}+C \bar{D})=0$.
(c) What is the limitation of half adder?
(d) How does a sequential logic system differ from combinational logic system?
(e) Write de Morgan's theorems.
(f) How many select inputs are required for $8: 1$ multiplexer?
(g) What is monolithic integrated circuit?
(h) What is 'Cache' memory?

Section-II

Answer any two questions:
$5 \times 2=10$
2. What do you mean by positive logic? Draw the circuit diagram of positive logic AND and OR gates using diodes and explain their operations.
3. What is a multiplexer? Design a $4: 1$ multiplexer using basic gates and explain its operation with truth table.
4. Draw the functional block diagram of 555 timer. Explain the operation of an astable multivibrator using 555 timer.
$1+4=5$
5. Given $f=A B+A C+C+A D+A B C$, express f in standard SOP form. Minimize it using K map. Realize the minimized expression using NAND gates only.

Section-III

Answer any one question:
6. (a) What is flip-flop? Write down some uses of flip-flops.
(b) Is there any difference between latch and Flip-flop?
(c) What is S-R flip-flop? Explain the operation of a clocked SR flip-flop with truth table.
(d) What do you mean by race around condition?

7. (a) Discuss the principle of operation of a binary full adder circuit by drawing proper circuit diagram. Write the Boolean expressions of its 'Sum' and 'Carry' outputs.
(b) Draw the circuit diagram of a serial-in serial-out 4 bit shift register and explain its working principle.
$(4+2)+(2+2)=10$

